78 research outputs found

    Energy, environment and sustainable development of the belt and road initiative: The Chinese scenario and Western contributions

    Get PDF
    Abstract The Belt and Road Initiative has tremendously increased the interaction of China with the countries involved, pushing forward the integration and comparative phase, based on the main factors affecting the energy, environmental and development scenarios. The indicators of this process are strictly related to the environmental sustainability of projects and infrastructural initiatives which entail aspects regarding climate change, environmental impact, transport management, urbanization and effective utilization of energy. Through this osmotic program, which the Chinese government said in 2013 would be executed from east to west, the contributions Western countries may make to maximize the common efforts are foreseeably very important for the success of the whole BRI and, indirectly, for the harmonization of the very rapid Chinese growth. China held the first position in 2014 for electricity generation (5388 billion kwh/h) and coal production (4.27 billion short tons/year), as well as the second position for petroleum consumption. On the other hand, carbon dioxide emissions were 1.8 times those of the USA in 2015, and transport, urbanization and energy intensity still struggle to attain optimal levels. The quality of productive sectors, research and universities is still low in the world ranking, despite the huge efforts of the Chinese, due to a still slow and cumbersome internationalization process. This article aims to integrate the numerous excellent studies published in the last few years on sustainable development and energy effectiveness within the BRI (Table 1 provides some specific references), by carrying out a systematic analysis of the Chinese energy, environmental and sustainable landscape from a Western perspective, breaking the main areas of the Chinese scenario down into its components and identifying those where the contributions of Western countries can support the gaps coverage. In this respect, the change of viewpoint provided by this study may be beneficial to properly balance the BRI perspective along the east-west axis

    Deep learning for quality control of surface physiographic fields using satellite Earth observations

    Full text link
    A purposely built deep learning algorithm for the Verification of Earth-System ParametERisation (VESPER) is used to assess recent upgrades of the global physiographic datasets underpinning the quality of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF), which is used both in numerical weather prediction and climate reanalyses. A neural network regression model is trained to learn the mapping between the surface physiographic dataset plus the meteorology from ERA5, and the MODIS satellite skin temperature observations. Once trained, this tool is applied to rapidly assess the quality of upgrades of the land-surface scheme. Upgrades which improve the prediction accuracy of the machine learning tool indicate a reduction of the errors in the surface fields used as input to the surface parametrisation schemes. Conversely, incorrect specifications of the surface fields decrease the accuracy with which VESPER can make predictions. We apply VESPER to assess the accuracy of recent upgrades of the permanent lake and glaciers covers as well as planned upgrades to represent seasonally varying water bodies (i.e. ephemeral lakes). We show that for grid-cells where the lake fields have been updated, the prediction accuracy in the land surface temperature (i.e mean absolute error difference between updated and original physiographic datasets) improves by 0.37 K on average, whilst for the subset of points where the lakes have been exchanged for bare ground (or vice versa) the improvement is 0.83 K. We also show that updates to the glacier cover improve the prediction accuracy by 0.22 K. We highlight how neural networks such as VESPER can assist the research and development of surface parameterizations and their input physiography to better represent Earth's surface couples processes in weather and climate models.Comment: 26 pages, 16 figures. Submitted to Hydrology and Earth System Sciences (HESS

    Global nature run data with realistic high-resolution carbon weather for the year of the Paris Agreement

    Get PDF
    The CO2 Human Emissions project has generated realistic high-resolution 9 km global simulations for atmospheric carbon tracers referred to as nature runs to foster carbon-cycle research applications with current and planned satellite missions, as well as the surge of in situ observations. Realistic atmospheric CO2, CH4 and CO fields can provide a reference for assessing the impact of proposed designs of new satellites and in situ networks and to study atmospheric variability of the tracers modulated by the weather. The simulations spanning 2015 are based on the Copernicus Atmosphere Monitoring Service forecasts at the European Centre for Medium Range Weather Forecasts, with improvements in various model components and input data such as anthropogenic emissions, in preparation of a CO2 Monitoring and Verification Support system. The relative contribution of different emissions and natural fluxes towards observed atmospheric variability is diagnosed by additional tagged tracers in the simulations. The evaluation of such high-resolution model simulations can be used to identify model deficiencies and guide further model improvements.The Copernicus Atmosphere Monitoring Service is operated by the European Centre for Medium-Range Weather Forecasts on behalf of the European Commission as part of the Copernicus Programme (http://copernicus.eu). The CHE and CoCO2 projects have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 776186 and No 958927. We also thank the FLUXNET and TCCON PIs for providing the data used for the validation of the nature run dataset.Peer Reviewed"Article signat per 27 autors/es: Anna Agustí-Panareda, Joe McNorton, Gianpaolo Balsamo, Bianca C. Baier, Nicolas Bousserez, Souhail Boussetta, Dominik Brunner, Frédéric Chevallier, Margarita Choulga, Michail Diamantakis, Richard Engelen, Johannes Flemming, Claire Granier, Marc Guevara, Hugo Denier van der Gon, Nellie Elguindi, Jean-Matthieu Haussaire, Martin Jung, Greet Janssens-Maenhout, Rigel Kivi, Sébastien Massart, Dario Papale, Mark Parrington, Miha Razinger, Colm Sweeney, Alex Vermeulen & Sophia Walther "Postprint (published version

    Impact of springtime Himalayan-Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts

    Get PDF
    The springtime snowpack over the Himalayan–Tibetan Plateau (HTP) region and Eurasia has long been suggested to be an influential factor on the onset of the Indian summer monsoon. To assess the impact of realistic initialization of springtime snow over HTP on the onset of the Indian summer monsoon, we examine a suite of coupled ocean–atmosphere 4-month ensemble reforecasts made at the European Centre for Medium-Range Weather Forecasts, using their Seasonal Forecasting System 4. The reforecasts were initialized on 1 April every year for the period 1981–2010. In these seasonal reforecasts, the snow is initialized “realistically” with ERA-Interim/Land Reanalysis. In addition, we carried out an additional set of forecasts, identical in all aspects except that initial conditions for snow-related land surface variables over the HTP region are randomized. We show that high snow depth over HTP influences the meridional tropospheric temperature gradient reversal that marks the monsoon onset. Composite difference based on a normalized HTP snow index reveal that, in high snow years, (1) the onset is delayed by about 8 days, and (2) negative precipitation anomalies and warm surface conditions prevail over India. We show that about half of this delay can be attributed to the realistic initialization of snow over the HTP region. We further demonstrate that high April snow depths over HTP are not uniquely influenced by El Nino-Southern Oscillation, the Indian Ocean Dipole or the North Atlantic Oscillation.RS and YOR were supported by the Research Council of Norway through the NORINDIA Project (#216576). AW and YOR were also supported by the EU project SPECS funded by the European Commission’s Seventh Framework Research Programme under the grant agreement 308378.Peer ReviewedPostprint (published version

    Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors

    Get PDF
    Information about the spatiotemporal variability of soil moisture is critical for many purposes, including monitoring of hydrologic extremes, irrigation scheduling, and prediction of agricultural yields. We evaluated the temporal dynamics of 18 state-of-the-art (quasi-)global near-surface soil moisture products, including six based on satellite retrievals, six based on models without satellite data assimilation (referred to hereafter as "open-loop" models), and six based on models that assimilate satellite soil moisture or brightness temperature data. Seven of the products are introduced for the first time in this study: one multi-sensor merged satellite product called MeMo (Merged soil Moisture) and six estimates from the HBV (Hydrologiska Byrans Vattenbalansavdelning) model with three precipitation inputs (ERA5, IMERG, and MSWEP) with and without assimilation of SMAPL3E satellite retrievals, respectively. As reference, we used in situ soil moisture measurements between 2015 and 2019 at 5 cm depth from 826 sensors, located primarily in the USA and Europe. The 3-hourly Pearson correlation (R) was chosen as the primary performance metric. We found that application of the Soil Wetness Index (SWI) smoothing filter resulted in improved performance for all satellite products. The best-to-worst performance ranking of the four single-sensor satellite products was SMAPL3E(SWI), SMOSSWI, AMSR2(SWI), and ASCAT(SWI), with the L-band-based SMAPL3ESWI (median R of 0.72) outperforming the others at 50% of the sites. Among the two multi-sensor satellite products (MeMo and ESA-CCISWI), MeMo performed better on average (median R of 0.72 versus 0.67), probably due to the inclusion of SMAPL3ESWI. The best-to-worst performance ranking of the six openloop models was HBV-MSWEP, HBV-ERA5, ERA5-Land, HBV-IMERG, VIC-PGF, and GLDAS-Noah. This ranking largely reflects the quality of the precipitation forcing. HBV-MSWEP (median R of 0.78) performed best not just among the open-loop models but among all products. The calibration of HBV improved the median R by C0 :12 on average compared to random parameters, highlighting the importance of model calibration. The best-to-worst performance ranking of the six models with satellite data assimilation was HBV-MSWEP+SMAPL3E, HBV-ERA5+SMAPL3E, GLEAM, SMAPL4, HBV-IMERG+SMAPL3E, and ERA5. The assimilation of SMAPL3E retrievals into HBV-IMERG improved the median R by C0:06, suggesting that data assimilation yields significant benefits at the global scale

    Verification of Land-Atmosphere Coupling in Forecast Models, Reanalyses and Land Surface Models Using Flux Site Observations

    Get PDF
    We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring

    the numerics of physical parametrization in the ecmwf model

    Get PDF
    The numerical aspects of physical parametrization are discussed mainly in the context of the ECMWF Integrated Forecasting System. Two time integration techniques are discussed. With parallel splitting the tendencies of all the parametrized processes are computed independently of each other. With sequential splitting, tendencies of the explicit processes are computed first and are used as input to the subsequent implicit fast process. It is argued that sequential splitting is better than parallel splitting for problems with multiple time scales, because a balance between processes is obtained during the time integration. It is shown that sequential splitting applied to boundary layer diffusion in the ECMWF model leads to much smaller time truncation errors than does parallel splitting. The so called Semi-Lagrangian Averaging of Physical Parametrizations (SLAVEPP), as implemented in the ECMWF model, is explained. The scheme reduces time truncation errors compared to standard first order methods, although a few implementation questions remain. In the scheme fast and slow processes are handled differently and it remains a research topic to find the optimal way of handling convection and clouds. Process specific numerical issues are discussed in the context of the ECMWF parametrization package. Examples are the non-linear stability problems in the vertical diffusion scheme, the stability related mass flux limit in the convection scheme and the fast processes in the cloud microphysics. Vertical resolution in the land surface scheme is inspired by the requirement to represent diurnal to annual time scales. Finally, a new coupling strategy between atmospheric models and land surface schemes is discussed. It allows for fully implicit coupling also for tiled land surface schemes
    • …
    corecore